Chapter 2

Sets and Mathematical Induction

In this lecture, we study the notions of sets, relations and functions which are basic tools of
discrete mathematics. The concept of a set appears in all mathematical structures.

2.1 Sets

Definition 2.1. A set is defined as the well-defined collection of objects, called the members
of elements of the set.

The sets are denoted by the uppercase alphabets such as A, B, C, ..., whereas the elements
of a set are denoted by lowercase letters such as a, b, ¢, and so on.

If a is an element of set A, then we write it as a € A, which is read as “a belongs to A.”
Similarly, if @ is not an element of A, then it is written as a ¢ A, read as “a does not belong

to A

Let A be a set containing the elements a, b, and c. Then it is described by listing the elements
of the set between braces and the elements are separated by commas. Hence,

A ={a,b,c}.
Remark: Tt is important to note that the order in which the elements of a set are listed is not

important. Therefore, {b,a,c},{b,c,a},{a,c,b},{c,a,b},{c, b,a} are the representations of
the same set A.

Set Formation

The set can be formed in two ways:
(i) Tabular form of a set, and
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(ii) Builder form of a set.
(i) Tabular form of a set

Definition 2.2. If a set is formed by listing its members, then it is called tabular form
of a set.

Example 2.1. If set A contians elements 0, 1, 2, 3, then it is expressed as A = {0, 1,2, 3}.

(ii) Builder form of a set

Definition 2.3. If a set is defined by the properties that its elements must satisfy, then it
is called buzlder form of a set.

Example 2.2. (i) A= {z |z € N,z is a multiple of 5}.
(ii) B = {z |z is odd number and z is less than 20}.

Subset

Definition 2.4. Suppose A and B are any two sets. Then A is called a subset of B,
symbolically, A C B, if and only if all the elements of A are also the elements of the set B.

On the other hand, a set A is not a subset of B, written as A ¢ B, if and only if there is at
least one element of A that is not in B.

Example 2.3. If A ={1,3,6} and B = {3,6,9,2,1}, then A is the subset of B ie., A C B.

Since every element in a set A is in A, it follows that any set A is a subset of itself.

Proper Subset

Definition 2.5. Let A and B be sets. Then A is said to be a proper subset of B, denoted
by A C B, if and only if, every element of A is in B but there is at least one element of B
that is not in A.

Example 2.4. The set A = {l,m,n} is a proper subset of the set B = {j, k,l,m,n,o0,p}.

Equal Sets

Definition 2.6. Two sets A and B are said to be equal, written as A = B, if every element
of Aisin B and every element of B is in A.

If A= B, then A C B and B C A. Two sets are equal if and only if they have the same
elements in it.
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Improper Subset

Definition 2.7. If a set A is a subset of set B, and A = B, then A is said to be an tmproper
subset of B.

Example 2.5. If A = {a,b,c}, and B = {a,b,c} then A is improper subset of B since
A=B.

Remark: Every set is improper subset of itself.

Example 2.6. Let
A=1{1,2,3,4,5}, B = {x | x is a positive integer and z* < 30}.
Is A= B?
Solution. We find the tabular form of the set B to check to check if it is equal to the set A.

Since x is a positive integer and 2?2 < 30, it shows that 12 = 1,22 = 4,32 = 9,
4% = 16, 5% = 25, but the square of any other positive integer is more than 30. So,

B={1,2,345} =4

Therefore, A = B.

Transitive Property of Subsets

If A, B, and C are sets and if A C B and B C C, then A C C.

Empty Set

Definition 2.8. A set which contains no element in it is called an empty or null or void
set. It is denoted by @ or simply {}.

Power Set

Definition 2.9. The set of all subsets (proper or not) of a set A, written as P(A), is called
the power set of A.

Example 2.7. If A = {a,b,c}, then find the power set of A?
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Solution. P(A) = {0,{a}, {b},{c}, {a,b},{a,c},{b,c},{a,b,c}}.

We note that all the members of P(A) are proper subsets of A except for {a,b, c}.

Note:
The number of elements in the above set A, denoted by |A| = 4.
Number of member of P(A) is |P(A)] =8 = 23

Theorem 2.1. If the set A has n elements i.e., |A| = n, then its power set will always have
2" elements in it, that is

|P(A)| =2".
Theorem 2.2. Let A and B be two sets. If A C B, then P(A) C P(B).

Universal Set

Definition 2.10. If we deal with sets all of which are subsets of a set U, then this set U is
called a universal set or a universe of discourse or a universe.

Union of Sets

Definition 2.11. Let A and B be subsets of a universal set U. Then the union of set A
and B, denoted by A U B, is the set of all elements a € U such that a € Aor a € B. It is
written as

AUB={a€U|a€ Aor a € B}.

Intersection of Sets

Definition 2.12. Let A and B be subsets of a universal set U. Then the intersection of
set A and B, denoted by AN B, is the set of all elements a € U such that a« € A and a € B.
It is written as

AUB={a€U|a€ Aand a € B}.

Difference of Sets

Definition 2.13. Let A and B be the subsets of universal set U. Then the difference B
minus A or relative complement of A in B, denoted by B — A, is the set of all elements
a in U such that a € B and a ¢ A.

It is written as

B—A={a€eUlac Banda¢ A}.

Similarly, the difference A — B is the set of all elements a € A and a ¢ B.
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Complement of Set

Definition 2.14. Let A be the subset of the universal set U. Then complement of A,
denoted by A, is the set of all the elements a in U such that a is not in A.
It is written as

A={aeUlag A}.

The complement of set A is also denoted as A€,

Cardinality of a Set

Definition 2.15. The total number of unique elements in the set is called the cardinality
of the set.

Example 2.8. The cardinality of set A = {a,b,c,d, e} is 5, whereas the cardinality of set
7 ={0,£1,42,43,...} is countably infinite.

Venn Diagrams (self study).

Example 2.9. Let
A={1,3,5},B=1{2,3,5T}.

Find AUB,ANB,A— B,B — A.

Solution.
AUB=1{1,2,3,57}, ANB=1{3,5}, A-B={1}, B— A= {2,7}.

We note that for sets A and B,
(i) ANBCAand ANBCB
(i) ACAUB and BC AUB.

Symmetric Difference of Sets

Definition 2.16. Let A and B be two sets. Then the symmetric difference between the
two sets A and B, denoted by A ® B or A A B, is the set containing all the elements that
are in A or in B but not in both.
Symbolically,

AdpB={(AUB)—- (AN B)}.
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Example 2.10. Let
A=A{a,b,c}, B={c,d,e,f}.

Find A ¢ B.
Solution.
AODB=(AUB)—- (ANB)

={a,b,c,d,e, f} — {c}
= {a,b,d7 eaf}'

Remark: The symmetric difference of two sets A and B can also be computed as

AOB=(A-B)U(B - A).

In the previous example, we see that A — B = {a,b} and B — A = {d, e, f}. Then it follows
that,
A®B=(A-—B)U(B—-A)={a,b,d,e, f}.
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2.2 Algebra of Sets

We now state various laws and identities that sets satisfy when the sets are being operated
by union, intersection and complement.

1. Commutative Laws:

AUB=BUA, ANB=BNA

2. Associative Laws:

AU(BuC)=(AuB)ucC
AN(BNC)=(ANnB)NnC

3. Distributive Laws:

AU(BNC)=(AUB)N(AUC)
AN(BUC)=(ANB)U(ANC)

4. Idempotent Laws:
AUA=A, ANA=A
5. Properties of Universal Set:
AuU =1, ANU=A
6. Absorption Laws:
AU(ANB)=A, AN(AuB)=A
7. Complement Law:
ANA=10
8. Double Complement Law:
(@) =4
9. De Morgan’s Laws:
(AUB)=AnNB, (ANB)=AUB
10. Alternate representation for set difference
A-B=ANB
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Disjoint Sets

Definition 2.17. Two sets A and B are said to be disjoint if and only if they have no
element in common. If A and B are disjoint sets, then

ANB=1.

Finite Set

Definition 2.18. A set A is said to be finite if it has n distinct or unique elements, where
n € N. In this case, n is called the cardinality of A and is denoted by |A].

Example 2.11. A = {8,4,5,0,3} is a finite set, where its cardinality is 5 i.e. |A| = 5.

Infinite Set

Definition 2.19. A set that consists of infinite number of different elements or a set that
is not finite is called infinite set.

Example 2.12. A set of integers Z, and a set of natural numbers N are infinite sets.

% Addition Principle or Inclusion-Exclusion Principle

If A and B are finite sets, then AU B and AN B are finite and

|JAUB| = |A|+|A| = |AN B|

Similarly, if A, B and C' are finite sets, then

|JAUBUB|=|A|+ |B|+|C|-|ANB|—|BNC|-]|ANC|+|]ANBNC

Cartesian Product of Sets

Definition 2.20. Let A and B be two sets. Then the cartesian product of A and B,
denoted by A x B, is defined as the set of all ordered pairs (a,b), where a € A and b € B.
Thus,

Ax B=A{(a,b)|a € A bec B}.
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If A=0 or B= 0, then A x B = (). Hence,
Ax(=10.

If we find the cartesian product of the set A itself, then A x A can also be denoted by A2
The set of elements (a,a) € A x A is known as the diagonal of A x A.
Example 2.13. Let A = {a, b}, then the cartesian product A x A is
Ax A= A*={(a,a),(a,b),(b,a),(b,b)}
Example 2.14. Let
A =1{1,2,3}, and B = {a,b}.

Then,

Ax B={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)},
and

B x A={(a,1),(a,2), (a,3), (b, 1), (b,2), (b,3)}.

It is important to note that,
AxB#BxA

Remark: If A has m elements and B has n elements, then A x B has mn elements.

2.3 Relations

Definition 2.21. Let A and B be two sets. Then a subset R of A x B is called a relation
in A and B.

Given an ordered pair (a,b) € A x B, a is related to b by R, written as a Rb, if and only if
(a,b) € R. If they are not related, then we write a Kb to denote (a,b) ¢ R.

If B= A, the R is called a relation on A.

The set of first components of pairs in R is called relation domain of R.

The set of last components of pairs in R is called relation range of R.

Hence, we have

Relation domain of R = {a | (a,b) € R}, and

Relation range of R = {b| (a,b) € R}.

If we denote the domain of R by D(R) and the range of R by R(R), then we have
D(R) C Aand R(R) C B.

If R is a relation of A on B, then R™!, the relation of B on A is defined by
R ={(b,a)|(a,b) € R}.



